Showing posts with label Asam dan Basa. Show all posts
Showing posts with label Asam dan Basa. Show all posts

Monday, 15 March 2010

Reaksi Asam dan Basa



Setelah kita mempelajari teori tentang asam dan basa, sekarang kita beralih mempelajari lebih dalam tentang reaksi2 dalam asam dan basa.

ASAM
adalah zat/senyawa yang dalam air dapat melepaskan ion hidrogen (H+) atau ion hidronium (H3O+).

Sifat asam :
  • rasanya masam

  • merusak/melarutkan logam (korosif)

  • memerahkan kertas lakmus biru

  • pH kurang dari 7

Contoh :

1. Asam Non-Oksi

Asam Klorida        :   HCl  --->  H+  +  Cl-

Asam Bromida     :   HBr  --->  H+  +  Br-

Asam Sianida       :   HCN --->  H+  +  CN-

Asam Sulfida        :   H2S  --->  2 H+  +  S2-

2. Asam Oksi

Asam Nitrat          :   HNO3  --->  H+  +  NO3-

Asam Sulfat          :   H2SO4 --->  2 H+  +  SO42-

Asam Karbonat    :   H2CO3 --->  2 H+  CO32-

Asam Phospat      :   H3PO4  --->  3 H+  +  PO43-

3. Asam Organik

Asam Asetat          :   CH3COOH  --->   H+  +  CH3COO- 

Asam Format         :   HCOOH   --->   H+  +  HCOO-

Asam Oksalat         :   H2C2O4   --->  H+  +  C2O42-


BASA
adalah zat/senyawa yang dalam air dapat melepaskan ion (OH-).

Sifat Basa  :
  • rasanya pahit

  • membakar (kaustik)

  • licin seperti sabun

  • membirukan kertas lakmus merah

  • pH lebih dari 7

Contoh  :

Natrium Hidroksida           :   NaOH   --->   Na+  +  OH-

Kalsium Hidroksida            :   Ca(OH)2   --->   Ca2+  +  2 OH-

Ferro Hidroksida                 :   Fe(OH)2   --->   Fe2+  + 2 (OH)-
(Besi (II) Hidroksida)

Ferri Oksida                          :   Fe(OH)3   --->   Fe3+  +  3 (OH)-             
(Besi (III) Hidroksida)

Ammonium Hidroksida   :   NH4OH   --->   NH4+  +  OH

contoh2 diatas adalah contoh zat yang digolongkan sebagai asam atau basa....tentu saja tidak mungkin ditampilkan semua ( karena terlalu banyak...)

Tata nama dalam asam

pada prinsipnya  :   Hidrogen (H+)  +  Anion =  asam ; 

dengan nama  "Asam +  nama anion"

keterangan           :

   banyaknya  Hidrogen (H+) dalam satu molekul = muatan anion pasangannya

Contoh                   :   

2 H+  +  SO42-  --->   H2SO4  ;  dengan nama Asam Sulfat

dalam contoh di atas dibutuhkan 2 ion hidrogen (H+) karena muatan SO42-  = -2 jadi agar total muatannya = 0 maka ion hidrogen yang muatannya = +1 dikalikan 2


Tata nama dalam basa

pada prinsipnya  :   kation  +  Hidroksida (OH)  =  basa ; 

dengan nama "nama kation +  hidroksida"

keterangan           :

banyaknya  Hidroksida (OH-) dalam satu molekul = muatan anion pasangannya

Contoh                   :

Al3+  +  3 OH-  --->   Al(OH)3 ;  dengan nama Alumunium Hidroksida

karena muatan Al = +3 maka OH- yang dibutuhkan untuk menjadikan muatan totalnya = 0 adalah -3, nilai -3 diperoleh dari OH- sebanyak 3 buah.....karena muatan OH- = -1 maka agar menjadi -3 perlu dikalikan 3

ASAM / BASA LEMAH DAN KUAT

Kekuatan asam atau basa ditentukan oleh kemampuan senyawa tersebut untuk menghasilkan ion H+  (untuk asam) atau OH- (untuk basa). semakin banyak ion H+  dan OH- yang dihasilkan maka kekuatan asam atau basanya semakin kuat.

ASAM KUAT DAN LEMAH

Asam Kuat
merupakan elektrolit kuat, di dalam air akan terionisasi sempurna menjadi ion2 penyusunnya. asam kuat mempunyai derajad dissosiasi = 1. derajad dissosiasi dirumuskan  :


besar derajad dissosiasi = 1 menunjukkan semua zat yang direaksikan terurai menjadi ion2nya.

HnA   --->   n H+  +  An-

Keterangan  : 
n = jumlah ion H dalam molekul = muatan anionnya

Asam Lemah

tidak seperti asam kuat, asam lemah digolongkan dalam elektrolit lemah.....hal ini karena tidak semua zat yang bereaksi terurai menjadi ion2nya namun hanya sebagian kecil saja. untuk menunjukkan besarnya zat yang terurai menggunakan derajad dissosiasi.


Jika kalian perhatikan reaksi umum dalam asam lemah sama saja dengan reaksi asam kuat....hanya saja reaksi dalam asam lemah berlangsung 2 arah, 

arah pertama = reaksi dari kiri ke kanan, terjadi peruraian zat asam menjadi ion2nya
arah kedua      = reaksi dari kanan ke kiri, terjadi penggabungan ion2 menjadi zat penyusunnya

kedua reaksi di atas terjadi terjadi bersamaan hingga konsentrasi zat asam dan hasil peruraiannya tidak berubah2 lagi. yang sering dikenal dengan titik setimbang / eqivalen. Saat terjadinya titik eqivalen inilah besarnya derajad dissosiasi dapat dicari. dan sebalikknya jika besarnya derajad dissosiasi diketahui maka jumlah ion H+  yang terbentuk dapa diketahui....



dari reaksi diatas dapat diketahui besarnya H+ yang terurai dipengaruhi oleh Konsentrasi asam (X), banyaknya ion H+ dalam satu senyawa dan derajad dissosiasi.

Tetapan Dissosiasi Asam (Ka)

Setelah kita mengenal istilah derajad dissosiasi selanjutnya kita bahas mengenai tetapan dissosiasi atau sering disebut sebagai Ka. Harga Ka diperoleh dari  :

HnA   --->   n H+  +  An-



Contoh Asam Kuat dan Lemah

Asam Kuat  : HCl, H2SO4, HNO3, H3PO4, HClO4 dll

Asam Lemah : CH3COOH, C2H5COOH, HCN, HCOOH, H2C2O4, H2S, H2CO3, HF dll

dengan alasan jumlah dan variasi asam lemah jauh lebih banyak dari asam kuat maka asam kuat lebih diprioritaskan untuk dihafalkan..... suatu jika tidak tergolong dalam asam kuat maka tergolong dalam asam lemah.

BASA KUAT DAN LEMAH

Basa kuat

seperti halnya asam kuat....basa kuat merupakan elektrolit kuat, di dalam air akan terionisasi sempurna menjadi ion2 penyusunnya. sehingga besarnya derajad dissosiasi = 1 (semua zat yang direaksikan terurai menjadi ion2 penyusunnya)


Basa Lemah

merupakan elektrolit lemah sehingga hanya terurai sebagian dan besarnya derajad dissosiasi diantara 0 sampai dengan 1.



Tetapan Dissosiasi Basa (Kb)



Contoh Basa Kuat dan Lemah

Basa Kuat : KOH, NaOH, Ca(OH)2 dll

Basa Lemah : NH3 atau NH4OH, Fe(OH)2, Fe(OH)3, Al(OH)2 dll

dengan alasan yang sama dengan cara penghafalan dalam asam maka jenis basa yang dihafal diprioritaskan yang basa kuat....karena jumlah dan variasi basa lemah jauh lebih banyak. Jadi suatu basa jika tidak tergolong dalam basa kuat maka secara otomatis digolongkan sebagai basa lemah.


Reaksi Asam dan Basa
1. Reaksi Penetralan

Jika larutan asam san larutan basa direaksikan maka terjadi reaksi penetralan, yaitu reaksi yang saling meniadakan sifat asam dan basa yang menghasilkan garam dan air.

Contoh :

Asam   +   Basa   --->   Garam   +   Air
HnA   +   B(OH)m --->   BnAm   +   H2O

Asam Phospat direaksikan dengan Kalsium Hidroksida akan terjadi reaksi penetralan sebagai berikut :

H3PO4    +   Ca(OH)2   --->   ???

coba kalian perhatikan Asam yang bereaksi di atas.....yakni H3PO4, PO4 adalah suatu anion (ion negatif) sehingga dapat berpasangan dengan Kation (ion positif) H+ yang bermuatan +1. Agar kita tahu muatan dari PO4 maka kita hitung jumlah H+ yang dibutuhkan untuk membentuk senyawa H3PO4........Ya....,ada 3 ion H dan karena muatan satu ion H = +1 maka muatan  total ion H = + 3. Sehingga untuk menetralkan muatan (menjadikan muatan totalnya = 0) membutuhkan muatan sebesar  -3.....dengan memperhatikan jumlah PO4 dalam senyawa....yakni 1 ion PO4 maka dipastikan muatan PO4 adalah -3. Hal ini berarti muatan PO4 dapat kita lihat dari jumlah ion H dalam senyawa asam yakni sebesar -3 (muatan negatif menunjukkan PO4 adalah suatu anion).
dengan cara yang sama, dalam senyawa basa Ca(OH)2.....dapat kita lihat 1 ion Ca membutuhkan ion OH- sebanyak 2 ion (sehingga muatan total OH- = -1.2 = -2) maka muatan ion Ca = +2 (muatan positif menunjukkan Ca adalah kation sehingga dapat bereaksi dengan anion yakni OH-)
Setelah kita tahu muatan PO4 adalah -3 dan muatan Ca adalah +2......agar muatan gabungan PO4 dengan Ca = 0 maka kita membutuhkan 2 ion PO4 dan 3 ion Ca, sehingga reaksi di atas menjadi :

2 H3PO4    +   3 Ca(OH)2   --->   ???

 Garam yang terbentuk sesuai dengan jumlah masing2 ion yang dibutuhkan.......yakni butuh 2 ion PO4 dan 3 ion Ca, sehingga membentuk garam Ca3(PO4)2 :

2 H3PO4    +   3 Ca(OH)2   --->   Ca3(PO4)2   +    6 H2O

langkah terakhir tinggal menghitung koefisien air (H2O) yang terbentuk dari reaksi di atas...yakni 6 H2O. angka 6 diperoleh dari prinsip penyetaraan reaksi yang berbunyi jumlah atom2 sejenis pada ruas kiri (sebelum reaksi) harus sama dengan ruas kanan (setelah reaksi). Pada ruas kiri dapat kita hitung jumlah atom H ada 12 (dari 2 H3PO4 ada 2.3 = 6 dan dari Ca(OH)2 ada 3.2 = 6 sehingga totalnya ada 12). sehingga atom H di ruas kanan....yakni dalam H2O harus kita kalikan dengan 6 agar jumlah atom H nya sama2 sebanyak 12.

Rumitkah penjelasan di atas ??

Cara penyelesaian reaksi di atas adalah cara khusus bagi kalian yang tidak hafal muatan2 tiap kation dan anion......maka alangkah baiknya kalau segera kalian hafal.
Bagi yang sudah hafal bahwa muatan PO4 adalah -3 sehingga bentuk ionnya = PO43- dan muatan Ca adalan +2 sehingga bentuk ionnya = Ca2+ dan agar muatannya seimbang butuh 2 ion PO43- dan 3 ion Ca2+ sehingga garam yang terbentuk adalah Ca3(PO4)2  dengan reaksi :

H3PO4    +   Ca(OH)2   --->   Ca3(PO4)2   +   H2O

selajutnya tinggal kita setarakan jumlah tiap2 atom di ruas kiri dan kanan......pada prinsipnya yang kalian setarakan adalah atom2 selain H dan O terlebih dahulu, setelah itu baru kalian setarakan H kemudian yang terakhir adalah atom O.

2 H3PO4    +   3 Ca(OH)2   --->   Ca3(PO4)2   +    6 H2O

2. Reaksi Oksida Asam dan Oksida Basa

Oksida asam adalah oksida bukan logam yang saat bereaksi dengan air membentuk asam.

CO2   +   H2O   --->   H2CO3
SO2   +   H2O   --->   H2SO3
SO3   +   H2O   --->   H2SO4
N2O3  +  H2O   --->   2 HNO2
N2O5  +  H2O   --->   2 HNO3
P2O5   +  H2O   --->  2 H3PO4
Oksida asam akan bereaksi dengan larutan basa membentuk garam dan air

 CO2   +   2 NaOH   --->   Na2CO3   +   H2O
N2O5  +  Ca(OH)2 --->   Ca(NO3)2  +  H2O
Oksida basa adalah oksida logam yang saat bereaksi dengan air akan menghasilkan basa

Na2O   +   H2O     --->    2 NaOH
K2O     +     H2O     --->   2 KOH
CaO     +     H2O     --->   Ca(OH)2
Al2O3   +  3 H2O   --->    2 Al(OH)3
FeO     +     H2O     --->   Fe(OH)2
Fe2O3  +  3 H2O   --->    2 Fe(OH)3

Oksida basa akan bereaksi dengan larutan asam membentuk garam dan air

Na2O   +   H2SO4   --->   Na2SO4   +   H2O
Fe2O3   +   HNO3   --->   2 Fe(NO3)3   +  3 H2O

3. Reaksi yang menghasilkan Endapan

Untuk mengetahui suatu reaksi menghasilkan endapan atau tidak....ada dua cara. Cara pertama menggunakan tabel kelarutan (dengan menghitung nilai perbandingan Ksp dengan Qsp nya). Cara kedua dengan menghafalkan sifat pencampuran ion2 seperti contoh di bawah ini :


Contoh :

BaCl2(aq) +  Na2SO4(aq)  --->   BaSO4(s) + 2NaCl (aq)

Reaksi Ion (larutan elektrolit terurai menjadi ion2nya dan yang mengendap tidak diuraikan)

Ba2+(aq) + 2Cl-(aq) + 2Na+(aq) + SO42-(aq) ---> BaSO4(s) + 2Na+(aq) + 2Cl-(aq)

Reaksi ion bersihnya (ion2 yang sama di ruas kiri dan kanan dihilangkan)

Ba2+(aq) + SO42-(aq) ---> BaSO4(s)

3. Reaksi yang menghasilkan Gas

 a. Reaksi yang menghasilkan gas CO

CaCO3(s) + 2HCl(aq) ---> CaCl2(s) + H2O(l)  + CO2(g)

Na2CO3(s) + H2SO4(aq) ---> Na2SO4(aq) + H2O(l)  + CO2(g)

Kedua reaksi di atas sebenarnya menghasilkan H2CO3 akan tetapi segera terurai menjadi H2O(l)  dan CO2(g)

b. Reaksi yang menghasilkan gas NH3

NH4Cl(s) +  KOH(aq) ---> KCl(aq) +  H2O(l)  + NH3(g)

reaksi di atas sebenarnya menghasilkan NH4OH akan tetapi segera terurai menjadi H2O(l)  dan NH3(g)

c. Reaksi yang menghasilkan gas H2S

FeS(s) + H2SO4 ---> FeSO4 + H2S

4. Reaksi Logam dengan Asam Kuat

Logam + Asam Kuat  --->  Garam  +  gas Hidrogen

Ca(s) + 2HCl(aq) ---> CaCl2(s) + H2O(g)

Na(s) + H2SO4(aq) ---> Na2SO4(aq) + H2(g)

Cu(s) + H2SO4(aq) --->  tidak terjadi reaksi

Ingat!! deret kereaktifan logam ---> Unsur dalam deret yang di sebelah kanan   tidak bisa menggeser unsur yang di sebelah kirinya......

Li - K - Ba - Ca - Na - Mg - Al - Zn -Cr - Fe - Ni - Sn - Pb - (H) - Cu - Hg - Ag - Pt - Au

letak Cu berada di sebelah kanan H sehingga tidak dapat menggeser/menggantikannya......

Saturday, 13 March 2010

Teori Asam dan Basa


Pada artikel ini akan dibahas mengenai teori asam dan basa Arrhenius, Bronsted-Lowry, dan Lewis. Artikel ini juga membahas hubungan antara ketiga teori asam dan basa tersebut. Selain itu juga dibahas mengenai konsep pasangan konjugasi yakni asam dan basa konjugasinya, atau basa dan asam konjugasinya.

Contoh asam : HCl, H2SO4, H3PO4, CH3COOH

Contoh basa : NaOH, Ca(OH)2, Al(OH)3, NH3

Dari contoh di atas terlihat CH3COOH pada contoh asam dan NH3 pada contoh basa menunjukkan perbedaan pola dari contoh-contoh yang lain. Sehingga perlu kalian cermati dan alasan-alasan penggolongannya akan dibahas lebih lanjut dalam teori-teori asam dan basa di bawah ini.

Teori asam dan basa Arrhenius

Teori
  • Asam adalah zat yang menghasilkan ion hidrogen ( H+) dalam larutan.

  •  Basa adalah zat yang menghasilkan ion hidroksida (OH-) dalam larutan.

Contoh reaksi larutan asam :

HCl ---> H+ + Cl-

H2SO4 ---> 2 H+ + SO42-

H3PO4 ---> 3 H+ + PO43-

CH3COOH ---> CH3COO- + H+

Contoh reaksi larutan basa :

NaOH ---> Na+ + OH-

Ca(OH)2 ---> Ca2+ + 2 OH-

Al(OH)3 ---> Al3+ + 3 OH-

NH3 + H2O ---> NH4+ + OH-

Penetralan terjadi karena ion hidrogen (H+) dan ion hidroksida (OH-) bereaksi untuk menghasilkan air.


Dalam reaksi lengkapnya penetralan asam dengan basa atau sebaliknya basa dengan asam akan menghasilkan garam dan air (H2O). Sebagai contoh adalah Natrium hidroksida (basa) yang dinetralkan dengan Asam Klorida (asam) sebagai berikut :


Pada reaksi Natrium hidroksida di atas, ion hidrogen dari Asam klorida bereaksi dengan ion hidroksida dari natrium hidroksida menghasilkan air - sejalan dengan teori Arrhenius. Demikian juga pada berbagai reaksi penetralan yang lain. Namun ada pengecualian yakni pada kasus Amonia (NH3) yang direaksikan dengan asam klorida sebagai berikut :


Dalam reaksi di atas amonia sama sekali tidak menghasilkan hidroksida (OH-) sehingga reaksi diatas tidak terbentuk air. Kalau begitu mengapa amonia dapat digolongkan sebagai basa ? hal itu karena amonia dengan air akan terjadi reaksi sebagai berikut :


Dari reaksi di atas terlihat amonia yang bereaksi dengan air akan menghasilkan ion ammonium (NH4+) dan hidrpksida (OH-).

Teori asam dan basa Bronsted-Lowry

Teori
  • Asam adalah donor proton (ion hidrogen).

  • Basa adalah akseptor proton (ion hidrogen).

Hubungan antara teori Bronsted-Lowry dan teori Arrhenius

Teori Bronsted-Lowry tidak berlawanan dengan teori Arrhenius - Teori Bronsted-Lowry merupakan perluasan teori Arrhenius. Bila dalam teori Arrhenius NaOH digolongkan sebagai basa karena melepaskan OH- maka dalam teori Bronsted-Lowry NaOH digolongkan sebagai basa karena OH- yang dihasilkan dalam penguraian NaOH mampu menerima H+ (proton) dan membentuk H2O (air).


Dari gambaran di atas terlihat yang berfungsi sebagai asam adalah H3O+ (ion hidroksonium) karena mampu melepaskan/mendonorkan H+ sehingga setelah melepas H+ berubah senjadi air (H2O). Sedangkan yang berfungsi sebagai basa adalah OH- (ion hidroksida) karena mampu menerima/akseptor ion H+ sehingga berubah jadi air (H2O).

Dengan teori Bronsted-Lowry ini untuk membuktikan bahwa amonia (NH3) berperan sebagai basa dalam reaksi antara amonia dan asam klorida. Kita tidak perlu melihat reaksi antara amonia (NH3) dengan air untuk melihat ion hidroksida yang dihasilkan.


NH3 berperan sebagai asam karena mampu menerima H+ dan HCl berperan sebagai asam karena mampu memberikan H+

Pasangan konjugasi

Ketika suatu asam/basa larut dalam air akan terurai menjadi ion-ionnya.

Secara umum asam yang bereaksi dengan air akan menghasilkan H3O+ (ion hidroksonium) yang bermuatan positif dan sisa asam yang bermuatan negatif (A-). A- dapat berwujud CH3COO-, Cl-, Br- dll. Dengan reaksi :


Perhatikan reaksi dari kiri ke kanan:

HA adalah asam karena HA mendonasikan sebuah proton (ion hidrogen) ke air.
Air adalah basa karena air menerima sebuah proton dari HA.

Akan tetapi ada juga reaksi dari kanan ke kiri antara ion hidroksonium dan ion A-:

H3O+ adalah asam karena H3O+ mendonasikan sebuah proton (ion hidrogen) ke ion A-.
Ion A- adalah basa karena A- menerima sebuah proton dari H3O+.

Reaksi reversibel mengandung dua asam dan dua basa. Kita dapat menganggapnya berpasangan, yang disebut pasangan konjugasi.

HA adalah asam dan A- adalah pasangan basa konjugasinya dan H2O adalah basa dan H3O+ adalah pasangan asam konjugasinya. Atau dengan kata lain suatu asam yang telah melepas H+ akan menjadi basa (sisa asam) dan suatu basa yang telah menerima H+ akan menjadi asam (sisa basa).

Berikut ini adalah reaksi antara amonia dan air yang telah kita lihat sebelumnya:


Mula-mula kita lihat reaksi dari kiri ke kanan terlebih dahulu :

Amonia berlaku sebagai basa karena amonia (NH3) menerima ion hidrogen dari air dan menghasilkan Ion amonium (NH4+) sebagai asam konjugasinya. Air berlaku sebagai asam karena melepas ion hidrogen (H+) dan menghasilkan ion hidroksida (OH-) sebagai pasangan basa konjugasinya.

Kemudian kita lihat reaksi dari kanan ke kiri :

ion amonium (NH4+) merupakan asam karena dapat melepaskan kembali ion hidrogen tersebut untuk membentuk kembali amonia (NH3) yang bertindak sebagai pasangan basa konjugasinya. Ion hidroksida merupakan basa karena dapat menerima ion hidrogen kembali untuk membentuk air yang bertindak sebagai pasangan asam konjugasinya.

Zat amfoter

Kalian mungkin memperhatikan (atau bahkan mungkin juga tidak memperhatikan!) bahwa dalam kedua contoh di atas, air berperilaku sebagai basa, tetapi di reaksi yang lain air berperilaku sebagai asam.

Suatu zat yang dapat berperilaku baik sebagai asam atau sebagai basa digambarkan sebagai amfoter. Zat amfoter ini akan bertindak sebagai basa bila direaksikan dengan asan dan akan bertindak sebagai asam bila direaksikan dengan basa.


Teori asam dan basa Lewis

Teori ini memperluas pemahaman anda mengenai asam dan basa.

Teori
  • Asam adalah akseptor pasangan elektron.

  • Basa adalah donor pasangan elektron.

Hubungan antara teori Lewis dan teori Bronsted-Lowry

Basa Lewis

Basa Lewis adalah donor (penyumbang) pasangan elektron. Hal yang paling mudah untuk melihat hubungan tersebut adalah dengan meninjau dengan tepat mengenai basa Bronsted-Lowry, menurut Bronsted-Lowry suatu zat disebut basa ketika mampu menerima ion hidrogen. Tiga contoh basa menurut Bronsted-Lowry adalah ion hidroksida, amonia dan air (saat direaksikan dengan asam), dan ketiganya bersifat khas.





Teori Bronsted-Lowry mengatakan bahwa ketiganya berperilaku sebagai basa karena ketiganya bergabung dengan ion hidrogen. Tapi Teori Lewis mempunyai alasan tersendiri kenapa ketiga2nya dapat digolongkan sebagai basa. Alasan ketiganya bergabung dengan ion hidrigen adalah karena ketiganya memiliki pasangan elektron mandiri – dan kedua teori itu sama2 terbukti kebenarannya sesuai dengan gambaran di atas.

Asam Lewis

Asam Lewis adalah akseptor pasangan elektron. Dalam contoh reaksi2 basa di atas bila OH-, NH3 dan H2O berperan sebagai basa maka H+ yang menerima pasangan elektronnya disebut sebagai asam. Untuk lebih memudahkan hal ini perhatikanlah reaksi berikut :


Dalam reaksi di atas amonia (NH3) yang menyumbangkan pasangan elektron bertindak sebagai basa sedangkan BF3 yang menerima pasangan elektron bertindak sebagai asam. Pada teori Bronsted-Lowry, BF3 tidak sedikitpun disinggung menganai keasamannya.

Bagaimana dengan reaksi asam basa yang mudah terdefinisikan dengan Teori Bronsted-Lowry, sebagai contoh, reaksi antara amonia dan gas hidrogen klorida?


Yang pasti telah kita pahami adalah nitrogen sebagai penyumbang pasangan elektron. Buku teks sering kali menuliskan tentang hal ini, yakni amonia mendonasikan pasangan elektron mandiri yang dimilikinya pada ion hidrogen, sebagai proton sederhana dengan tidak adanya elektron disekelilingnya (H+).

Ini adalah sesuatu hal yang menyesatkan! Dalam sistem kimia ion hidrogen bebas sangatlah sedikit. Hal ini karena ion hidogen sangat reaktif dan selalu tertarik pada yang lain. Tidak terdapat ion hidrogen yang tidak bergabung dalam HCl.

Kalau begitu mengapa HCl adalah suatu asam Lewis?

Klor lebih elektronegatif dibandingkan dengan hidrogen, ini berarti bahwa hidrogen klorida akan menjadi molekul polar. Elektron pada ikatan hidrogen-klor akan tertarik ke sisi klor, menghasilkan hidrogen yang bersifat sedikit positif dan klor sedikit negatif.


Pasangan elektron mandiri pada nitrogen yang terdapat pada molekul amonia tertarik ke arah atom hidrogen yang sedikit positif pada HCl. Setelah pasangan elektron mandiri milik nitrogen mendekat pada atom hidrogen, elektron pada ikatan hidrogen-klor tetap akan tertarik ke arah klor. Akhirnya, ikatan koordinasi terbentuk antara nitrogen dan hidrogen, dan ikatan hidrogen-klor terputus keluar sebagai ion klorida.