Sunday 19 September 2010

Konfigurasi Elektron dan Diagram Orbital


Dalam penulisan konfigurasi elektron dan diagram orbital perlu berlandaskan pada tiga prinsip utama yaitu prinsip aufbau, aturan Hund dan aturan penuh setengah penuh.

A. Azas Aufbau

Azas Aufbau menyatakan bahwa :“Pengisian elektron dimulai dari subkulit yang berenergi paling rendah dilanjutkan pada subkulit yang lebih tinggi energinya”. Dalam setiap sub kulit mempunyai batasan elektron yang dapat diisikan yakni :

Subkulit s maksimal berisi 2 elektron
Subkulit p maksimal berisi 6 elektron
Subkulit d maksimal berisi 10 elektron
Subkulit f maksimal berisi 14 elektron

Berdasarkan ketentuan tersebut maka urutan pengisian (kofigurasi) elektron mengikuti tanda panah pada gambar berikut!
Berdasarkan diagram di atas dapat disusun urutan konfigurasi elektron sebagai berikut :

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 …. dan seterusnya

Keterangan :
Jumlah elektron yang ditulis dalam konfigurasi elektron merupakan jumlah elektron maksimal dari subkulit tersebut kecuali pada bagian terakhirnya yang ditulis adalah elektron sisanya. Perhatikan contoh di bawah ini :
Jumlah elektron Sc adalah 21 elekron kemudian elektron-elektron tersebut kita isikan dalam konfigurasi elektron berdasarkan prinsip aufbau di atas. Coba kalian perhatikan, ternyata tidak selalu kulit yang lebih rendah ditulis terlebih dahulu (4s ditulis dahulu dari 3d). Hal ini karena semakin besar nomor kulitnya maka selisih energi dengan kulit di atasnya semakin kecil sementara jumlah sub kulitnya semakin banyak sehingga terjadi tumpang tindih urutan energi sub kulitnya. Untuk mempermudah penilisan tingkatenerginya digunakan prinsip aufbau di atas. Untuk keteraturan penulisan, 3d boleh ditulis terlebih dahulu dari 4s namun pengisian elektronnya tetap mengacu pada prinsip aufbau. hal ini terkesan remeh tapi penting..... jadi bila kalian disuruh menuliskan bilangan kuantum dari elektron terakhir dari Sc maka elektron tersebut terletak pada sub kulit 3d bukan 4s, walau dalam penulisan terakhir sendiri adalah sub kulit 4s.....cirinya pada sub kulit 3d tidak terisi penuh elektron sedangkan sub kulit 4s nya terisi penuh.
Penulisan konfigurasi elektron dapat disingkat dengan penulisan atom dari golongan gas mulia yaitu : He (2 elektron), Ne (10 elektron), Ar (18 elektron), Kr (36 elektron), Xe (54 elektron) dan Rn ( 86 elektron). Hal ini karena pada konfigurasi elektron gas mulia setiap sub kulitnya terisi elektron secara penuh.
Skema yang digunakan untuk memudahkan penyingkatan sebagai berikut :
Contoh penyingkatan konfigurasi elektron :

Konfigurasi elektron dalam atom selain diungkapkan dengan diagram curah hujan, seringkali diungkapkan dalam diagram orbital. Ungkapan yang kedua akan bermanfaat dalam menentukan bentuk molekul dan teori hibridisasi.
Yang harus diperhatikan dalam pembuatan diagram orbital :
1. Orbital-orbital dilambangkan dengan kotak
2. Elektron dilambangkan sebagai tanda panah dalam kotak
3. Banyaknya kotak ditentukan berdasarkan bilangan kuantum magnetik, yaitu:
4. Untuk orbital-orbital yang berenergi sama dilambangkan dengan sekelompok kotak yang bersisian, sedangkan orbital dengan tingkat energi berbeda digambarkan dengan kotak yang terpisah.
5. Satu kotak orbital berisi 2 elektron, satu tanda panah mengarah ke atas dan satu lagi mengarah ke bawah. Pengisan elektron dalam kotak-kotak orbital menggunakan aturan Hund.

B. Aturan Hund

Friedrich Hund (1927), seorang ahli fisika dari Jerman mengemukakan aturan pengisian elektron pada orbital yaitu :
“orbital-orbital dengan energi yang sama, masing-masing diisi lebih dulu oleh satu elektron arah (spin) yang sama dahulu kemudian elektron akan memasuki orbital-orbital secara urut dengan arah (spin) berlawanan atau dengan kata lain dalam subkulit yang sama semua orbital masing-masing terisi satu elektron terlebih dengan arah panah yang sama kemudian sisa elektronnya baru diisikan sebagai elektron pasangannya dengan arah panah sebaliknya”.
Coba perhatikan contoh diagram elektron di bawah ini, khususnya pada bagian akhirnya :
Pada pengisian diagram orbital unsur S pada konfigurasi 3p4, 3 elektron diisikan terlebih dahulu dengan gambar tanda panah ke atas baru sisanya 1 elektron digambar dengan tanda panah ke bawah.

C. Aturan Penuh Setengah Penuh

Sifat ini berhubungan erat dengan hibridisasi elektron. Aturan ini menyatakan bahwa : “suatu elektron mempunyai kecenderungan untuk berpindah orbital apabila dapat membentuk susunan elektron yang lebih stabil.....untuk konfigurasi elektron yang berakhiran pada sub kulit d berlaku aturan penuh setengah penuh. Untuk lebih memahamkan teori ini perhatikan juga contoh di bawah ini :
24Cr = 1s2 2s2 2p6 3s2 3p6 4s2 3d4  menjadi 24Cr = 1s2 2s2 2p6 3s2 3p6 4s1 3d5

dari contoh terlihat apabila 4s diisi 2 elektron maka 3d kurang satu elektron untuk menjadi setengah penuh....maka elektron dari 4s akan berpindah ke 3d. hal ini juga berlaku untuk kasus :

29Cu = 1s2 2s2 2p6 3s2 3p6 4s2 3d9  menjadi 29Cu = 1s2 2s2 2p6 3s2 3p6 4s1 3d10

Penentuan Periode dan Golongan Suatu Unsur

Untuk menentukan letak periode suatu unsur relatif mudah. Periode suatu unsur sama dengan nomor kulit terbesarnya dalam konfigurasi elektron. musalnya :
24Cr = 1s2 2s2 2p6 3s2 3p6 4s1 3d5
Nomor kulit terbesarnya adalah 4 (dalam 4s1) maka Cr terletak dalam periode 4
Sedangkan untuk menentukan golongan menggunakan tabel. Bila subkulit terakhirnya pada s atau p maka digolongkan dalam golongan A (utama) sedangkan bila subkulit terakhirnya pada d maka digolongkan dalam golongan B (transisi). Lebih lengkapnya coba perhatikan tabel di bawah ini :
Coba kalian perhatikan tabel di atas. Untuk memudahkan pengingatan golongan A dimulai dari golongan I A sedangkan golongan B dimulai dari III B. selain itu jika subkulit terakhirnya p atau d maka sub kulit s sebelumnya diikutkan. Pada golongan VI B dan I B berlaku aturan penuh setengah penuh.
Sebagai contoh :
24Cr = 1s2 2s2 2p6 3s2 3p6 4s1 3d5

Periode = 4
Golongan = VI B

Bilangan Kuantum


Ada empat bilangan kuantum yang akan kita kenal, yaitu bilangan kuantum utama (n), bilangn kuantum Azimut (l), bilangan kuantum magnetic (m) dan bilangan kuantum spin (s).

A. Bilangan Kuantum Utama (n)

Lambang dari bilangan kuantum utama adalah “n” (en kecil). Bilangan kuantum utama menyatakan kulit tempat ditemukannya elektron yang dinyatakan dalam bilangan bulat positif. Nilai bilangan itu di mulai dari 1, 2, 3 dan seterusnya.
Jenis kulit-kulit dalam konfigurasi elektron dilambagkan dengan huruf K, L, M, N dan seterusnnya. Kulit yang paling dekat dengan inti adalah kulit K dan bilangan kuantum kulit ini = 1. Kulit berikutnya adalah L yang mempunyai bilangan kuantum utama = 2 dan demikian seterusnya untuk kulit-kulit berikutnya. Untuk lebih jelasnya coba perhatikan tabel di bawah ini
Dari tabel di atas terlihat bahwa bilangan kuantum utama berhubungan dengan kulit atom sehingga bilangan kuantum utama dapat Anda gunakan untuk menentukan ukuran orbit (jari-jari) berdasarkan jarak orbit elektron dengan inti atom. Kegunaan lainnya, Anda dapat mengetahui besarnya energi potensial elektron. Semakin dekat jarak orbit dengan inti atom maka kekuatan ikatan elektron dengan inti atom semakin besar, sehingga energi potensial elektron tersebut semakin besar.

B. Bilangan Kuantum Azimut (l)

Bilangan kuantum azimut menyatakan subkulit tempat elektron berada dan bentuk orbital, serta menentukan besarnya momentum sudut elektron terhadap inti. Bilangan kuantum ini berhubungan dengan subkulit atom. Lambang subkulit ini adalah s, p, d, f dan seterusnya. Nilai bilangan kuantum azimut dimulai dari angka nol (0). Jadi secara urut subkulit s mempunyai bilangan kuantum azimut = 0, subkulit p mempunyai bilangan kuantum azimut = 1, subkulit d mempunyai bilangan kuantum azimut = 2 dan demikian seterusnya.
Besarnya bilangan kuantum azimut yang mungkin tergantung pada nilai bilangan kuantum utama (n). Bila n=1, maka hanya ada satu kemungkinan nilai bilangan kuantum azimut yaitu l = 0 karena pada kulit pertama (K) hanya terdiri dari satu subkulit yaitu subkulit s. Sedangkan n=2, maka ada dua subkulit yang mungkin yaitu l = 0 dan l = 1 karena pada kulit kedua (L) ada dua subkulit yaitu sub kulit s dan p.
Bagaimana dengan kulit berikutnya?
Kulit M, maka nilai n = 3 dan l = 0, 1, dan 2 karena mempunyai subkulit s, p, dan d.
Kulit N, maka nilai n = 4 dan l = 0, 1, 2, dan 3 karena mempunyai subkulit s, p, d, dan f.
Jadi nilai bilangan kuantum azimut tidak mungkin sama atau lebih besar dari bilangan kuantum utamanya. Maksimal nilai l = n – 1.

C. Bilangan Kuantum Magnetik (m)

Bilangan kuantum magnetik menyatakan orbital tempat ditemukannya elektron pada subkulit tertentu dan arah momentum sudut elektron terhadap inti. Sehingga nilai bilangan kuantum magnetik berhubungan dengan bilangan kuantum azimut dan bernilai dari - l hingga + l (l = nilai bilangan kuantum azimutnya).
Misalnya subkulit s mempunyai nilai l = 0 maka bilangan kuantum magnetiknya (m) = 0. Angka nol ini melambangkan satu-satunya orbital yang ada pada subkulit s. Sub kulit p mempunyai nilai l = 1 maka bilangan kuantum magnetiknya = - 1, 0, +1. Angka-angka tersebut melambangkan 3 orbital yang ada pada subkulit p. Subkulit d mempunyai nilai l = 2 maka bilangan kuantum magnetiknya = - 2, - 1, 0, + 1, + 2. Angka-angka tersebut melambangkan 5 orbital yang ada pada subkulit d dan demikian seterusnya.
Dari tabel di atas terlihat bahwa nilai magnetik (m) diantara - l sampai + l (l = bilangan kuantum azimut). Nilai bilangan kuantum magnetik suatu elektron tergantung pada letak elektron tersebut dalam orbital. Nama-nama kotak di atas sesuai dengan bilangan kuantum magnetiknya. Dan perlu diingat juga dengan mengabaikan tanda -/+ maka nilai m tidak mungkin lebih besar dari nilai l. 

D. Bilangan Kuantum Spin (s)

Bilangan kuantum spin menyatakan arah rotasi elektron pada porosnya. Dalam satu orbital dapat berisi elektron tunggal atau sepasang elektron. Ada dua kemungkinan arah rotasi yaitu searah jarum jam atau berlawanan arah jarum jam. Begitulah elektron yang berotasi, bila searah jarum jam maka memiliki nilai s = + ½ dan dalam orbital dituliskan dengan tanda panah ke atas. Sebaliknya untuk elektron yang berotasi berlawanan arah jarum jam maka memiliki nilai s = - ½ dan dalam orbital dituliskan dengan tanda panah ke bawah.
Dari uraian arah rotasi maka kita dapat mengetahui bahwa dalam satu orbital atau kotak maksimum memiliki 2 elektron. Bila dalam orbital terdiri dari satu elektron maka nilai s = + ½ karena elektron tersebut berputar searah jarum jam. Dan bila dalam orbital terdiri dari 2 elektron maka nilai s = - ½ karena menunjukkan elektron tersebut merupakan pasangan elektron sebelumnya yang berputar searah jarum jam sehingga mempunyai perputaran sebaliknya yaitu berlawanan dengan arah jarum jam.

Azas Larangan Pauli

W. Pauli (1924) mengemukakan Azas Larangan Pauli “Tidak boleh ada elektron dalam satu atom yang memiliki ke empat bilangan kuantum yang sama”.


Fungsi Bilangan Kuantum

Keempat bilangan kuantum tersebut digunakan untuk menunjukkan letak elektron terakhir (terluar) dari suatu atom. Dimulai dari letak kulit atom (bilangan kuantum utama), subkulit atom (bilangan kuantum azimut), letak orbital (bilangan kuantum magnetik) hingga perputaran elektronnya (bilangan kuantum spin). Sehingga bilangan kuantum ini bersifat spesifik sesuai dengan azas larangan pauli. Selanjutnya kita gabungkan keempat bilangan kuantum tersebut untuk menentukan identitas suatu elektron. Agar dapat menentukan dengan tepat maka kita harus paham dengan konfigurasi elektron dan diagram orbital terlebih dahulu.
Sebagai contoh konfigurasi elektron dan diagram orbital dari sulfur (S) seperti di bawah ini :
Untuk menentukan bilangan kuantum dari elektron terakhirnya kita cukup memperhatikan subkulit terluarnya yakni 3p :
Penggambaran elektron terakhir yang diberi tanda merah. Elektron tersebut terletak pada kulit 3 berarti bilangan kuantum utamanya (n) = 3. Terletak di subkulit p berarti bilangan kuantum azimutnya (l) = 1. Sedangkan untuk menentukan bilangan kuantum magnetiknya kita perlu menamai tiap-tiap orbital dalam subkulit 3p tersebut yakni angka yang berwarna hijau. Sesuai dengan diagram di atas maka nilai bilangan kuantum magnetiknya (m) = - 1. Dan karena tanda panahnya ke bawah maka bilangan kuantum spinnya (s) = - ½ .